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Abstract. A fixed point theorem for three mappings on three metric spaces is
proved. This result is a modification of the result of Nesic’' [1] from two mappings of a
metric space into itself, to three mappings of different metric spaces. We have modified
the methods used by Ne§ic¢' [1] and by Jain, Shrivastava and Fischer [3]. We also show
that the Theorem of Nung [2] is a corollary of our result and that it is sufficient the
continuity of only one of the mappings. An application of our result is presented.
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1. Introduction
In [1], the following theorem is proved:

Theorem 1.1 Let (X,d) be a metric space and S,T be two mappings of X into
itself, satisfying the following inequality:
[1+ pd(x, )]d(Sx,Ty) < pld(x,Sx)d(y,Ty)+d(x,Ty)d(y, Sx)]+

+ qmax{d(x, y), d(x, 50, d(y,Ty),%[d(x, 1Y)+ d(y, 591}

forall x,ye X, where p=0 and 0<g<1.

If (X,d) is (S,T)-orbitally complete metric space, then S and T have an unique
common fixed point u in X .

In [2], the following theorem is proved:
Theorem 1.1 Let (X,d,),(Y,d,),(Z,d,) be three complete metric spaces and T be
a continuous mapping of X into Y, S a continuous mapping of ¥ into Z and R be a
continuous of Z into X , satisfying the following inequality:
d,(RSTx, RSy) < cmax{d,(x, RSy),d,(x, RSTx),d,(y,Tx),d;(Sy, STx)}
d,(TRSy,TRz) < cmax{d,(y,TRz),d,(y,TRSy),d,(Z,Sy),d,(Rz, RSy)}
d,(STRz,STx) < cmax{d,(z, STx),d;(z,STRz),d,(x, Rz),d,(Tx,TRz)}
for all xe X,yeY and zeZ, where 0<c<1. Then RST has an unique fixed point

ue X, TRS has an unique fixed point veY and STR has an unique fixed point we Z.
Further, Tu =v,Sv=w and Rw=u.
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In this paper we will give a generalization of Theorem 1.2 modifying the results of
Nesic' [1]. We will also show that in Theorem 1.2 it is not nescessary the continuity of
the three mappings, but it is sufficient the continuity of only one of them.

An application of our result is presented.

2. Main results

Theorem 2.1 Let (X,d|),(Y.d,),(Z,d,) be three complete metric spaces and
I''X—>Y,8:Y—>Z and R:Z — X be three mappings from which at least one of them
is continuous, satisfying the following inequality:

[1 + pd (x,RSy)+ pd,(y,Tx))d,(RSy, RSTx) <
< pld, (x, RSy)d,(Sy,STx) + d, (x, RSTx)d, (y,TRSy) + d, (x, RSy)d, (v, Tx)] +
+ gmax{d,(x, RSy),d (x,RSTx),d,(y, Tx),d,(STx, Sy)} (D)

[1 + pd,(y,TRz)+ pd,(z,5y)ld,(TRz,TRSy) < :
< pld,(y,TRz)d,(Rz, RSy) + d,(y,TRSy)d,(z,STRz) + d,(y, TRz)d, (z, Sy)] +
+ gmax{d,(y,TRz),d,(y,TRSy), d;(2,Sy),d,(RSy, Rz)} 2

[1 + pd,(z,5Tx)+ pd,(x,Rz)1d,(STx,STRz) <
< pldy(z,5Tx)d,(Tx,TRz) + d,(z,STRz)d, (x, RSTx) + d,(z, STx)d,(x,Rz)] +
+ gmax{d,(z,S8Tx),d,(z,STRz),d,(x, Rz),d, (TRz,Tx)} 3)
forall xe X,yeY,zeZ, where p>0 and 0<q <1. Then RST has an unique fixed
point c€ X, TRS has an unique fixed point €Y and STR has an unique fixed point
y€Z. Further, Ta= 3,S8=y and Ry =«.
Proof. Let x, € X be an arbitrary point. We define the sequences (x,),(»,) and

(z,) in X,Y and Z respectively as follows: '

xn :(RST)"xO’yn :Txn—l!zn‘ :Syn

for n=1,2,...

By the inequality (2), for y=y, and z=z_, we get:

n-1
[1+ pdy(¥,,¥,)+ Pd;(2,.,2,)1d, (¥, Yt <
< Pl (0 ) (%15 %) + Ay (3,5 9,1)d3(2,21,2,) + Ay (3,5 ,)d5 (2,1, 2,)] +
+ qmax{dy(¥,, ¥, &y (V> Vour 1,45 (2,1, 2, )., (%, %, )}
from which it follows:
&y (Vs Vo) S qmaxi{d, (¥, ¥, ), (x,,%,.,),d5(2,,2, )} = gmax 4
where 4 = A G W A T (2,,2,)} -
If maxA=4d,(y,,5,,),then we have:
Ay (V> Yoot) S48y (Vs V)
and since 0<gq <1, it follows d,(y,,»,,,)=0.
Thus we have:

Rt s e e e e S )
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d2 (yn! y}h\l) S g max{dl (xn H xn-l )3 d3 (Zn9 zn—l )} (4)

In the same way, by (3), for x=1x,_, and z =z, , we get:
[]‘ o pd3 (Zn ] 2.!1) + pdl (xlr-l 2 xn)]dfi (zn? ziﬁ—l) =
= p[dl(zn’ Zn)d'l (yn’ yn+l) + d} (Zn’ Zn+l)dl (xn—l ’ xn) + d3(2n7 zi:)d] (xn’xn)] +
h qmax{d3(znizn)9d3(Zn’zu+l)’dl(xnfl’xn)5d2(yn+l’yn)}
from which we get:
dylz

n?

zn+1) = qmax{dl (xn—lixn)’d3(zn—lﬂ zn)} (5)

In the same way, by (1), for y=y, and x=x, we get:
(1 + pd\(x,, %)+ Pdy (Y, Y1 (%, %,1) <
< pld(x,,%,)45(2,,2,0) + A, (%,,%,, )8, (Vs Vo) + 4, (x,:%,), (¥, Y]+
+ qmax{dl(xn?xn)!di(xlr’xn+])9d2(yn=yn+l)’d3(zn+17‘zn)}

from which we get:
dy(x,,x,,,) < gmax{d,(x,, %, ), &5 (Vs> Vo ) &5(2,,2,.1)}
and by (4) and (5) we have:
d\(x,,x,,,) < gmax{d,(x,.,x,),d;(z,.,,2,)} (6)

n?

Taking n equal with n—1,n—2,...., using (4), (5) and (6) we obtain:
d(x,,x,.,) < g max{d,(x,,x,),d;(z,,2,)}
dy (V> Vo) S ¢ max{d, (x,,%,),d5(2,,2,)}
&i(2,:2,.0) S g max{d (x; %, )4, (25250}

Since 0<g <1, the sequences (x,),(y,) and (z,) are Cauchy sequences with limit

a,f and ¥ in X,Y and Y respectively.
Suppose that the mapping S is continuous. Then by
lim Sy, =lim z,

n—w n—rw
we get:

Sp=r (7

By (1), for y=/f and x=x, we get:
[1 + pd,(x,,RSB)+ pdy(B,y,.)1d\ (RSB, x,,,) <
< pld,(x,, RS B)d;(S B, 2,.,) + dy (%, %, ), (B, TRS B) + d, (x,, RS B}, (5, y,,.. )] +
+ gmax{d,(x,, RS B),d,(%,,%,.1): &> (B> ¥, )45 (1> S B)}
Letting n tend to infinity, by the fact that S8 = y we get:
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[1+ pd\(a, RS §))d\(a, RS ) < qd, (e, RS B)

g
(@, RSp) < — = d.(a,RS )

from which it follows:
d(a,RSB)=0= RSf=« (8)
since

q <
1+ pd, (e, RS B)

g=1

By (2), for z=Sf and y =y, , we get:

[1 + pdy(3,,TRSB) + pdy(S P, 2, )\, (TRS B, y,1) <

< pldy(3,, TRS B)d,(RS B, ,) + dy (3, 7, ) (S B, STRS B) + d, (3, TRS B)d (S B, 2, )] +
+ qmax{d, (3, TRSB),dy (3, 7,1 )s s (SB, 2,),, (x, RS B}

Letting n tend to infinity, by (7) and (8) we get:
[1+ pd,(B,TRS §)1d,(TRS B, B) < qd,(TRS 3, B)
from which it follows d,(TRSS,8)=0 or

TRSp =4 ©)

By (7), (8), (9) we get:
TRSG =TRy=Ta=p
STRy = STa=Sp=y
RSTa = RSE=Ry=a.

Thus, we proved that the points «, S,y are fixed points of RST,TRS and STR
respectively. ‘

In the same conclusion we would arrive if one of the mappings R or 7 would be
continuous.

We emphasize the fact that it is sufficient the contiunity of only one of the
mappings 7,S and R.

Let we prove now the unicity of the fixed points e, 8 and .

Assume that there is &' a fixed point of RST different from « .

By (1), for y=Ta and x=a', we get:
[1 + pd(a’,RSTa)+ pd,(Ta,Ta")d,(RSTa, RSTa") <
< pld (e, RSTa)d, (ST, STa') +d (&', RSTa")d,(Tet, TRST ) + d, (&', RST &) d,, (Tx, Tar')] +

+ gmax{d (a',RSTa),d (a',RSTa"),d,(Ta,Ta'),d,(STe', STex)}
or
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(1 + pd(a',a)+ pd,(To,Ta)d (a,a’) <
< pld(a',a)d,(STa,STa' )+ 0+d (a',a)d, (T, Ta' )]+
+ gmax{d (e, a),0,d,Ta,Ta"),d,(STa',STa)}

or
[1+ pd,(a,a)d,(a,a") <

< pld,(e,a")d, (ST, STa') +
+ gmax{d,(a,a"),d,(Ta,Ta'),d,(STa,STa')} (10)

In respect of max{d,(a,a'),d,(Ta,Ta"),d,(STa,STa')} =max A we distinguish

the following three cases:
Case 1. If max 4 =d (a,a’"), we have d,(STa,STa')<d,(a,a’), and by (10) we

obtain:
[1+ pd,(a,aN)d (e, ) <

< pld(a,a")d,(STa, STa') +qd (a,a') <
< pd(a,a)d (o, ') +qd,(a,a').

By the above we obtain d,(a, ") < gd,(a,c") and since 0<q <1 we get:
a=a' (11)

Case 2. If maxA=d,(Ta,Ta"), we have d,(STa,STa')<d,(Ta,Ta'), and by

(10) we obtain:
[1+ pd (a,a"))d, (e, ") <

< pld(a,a")d,(STa, STa")+qd,(To,Ta'") <
< pd(a,a)d,(Ta,Ta")+qd,(Ta,Ta").

or

[1+ pd,(ct,a))d, (@, @) < [q+ pd, (@, @’)|d, (Te, Te)

d(a,a) < THPAEE) 4 ory 7,

1+ pd, (e, ')
from which it follows:
d(a,a")<rd,(Ta,Ta") (12)
where
0<p=dtpdlaa)
1+ pd (e, a")

since 0 <g <1.
Case 3. If max 4 = d,(ST«, Sta'), then the inequality (10) takes the form:
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(1+ pd,(a,ed (e, a") < pld,(a,&')dy(STer, STe') + qd, (STer, ST ')
g+ pd(a,a’)
1+ pd, (a,a")
di(e, ') < rd,(STa, STar') (13)

d(a,a") < d,(STe,STe')

Continuing our argumentation for the Case 2, by (2) for z=STa and y=Tca' we
have:
[1 + pd,(Ta',TRSTa)+ pd, (ST, STa"))d,(TRST e, TRST ') <
< pld,(Ta', TRSTa)d,(RST e, RST ') +d, (T’ ,TRSTx")d, (ST x, STRST cx)) +
+d,(Ta', TRSTa)d,(ST e, STe")] + g max{d,(Ta',TRST ),
d,(Ta', TRSTa'),d,(STe,STx"),d,(RSTex', RST x)}
or
(1 + pd,(Ta',Ta)+ pd,(STa, STa)d,(Te,Ta'") <
< pld,(Ta',Ta)d (a,a')+d,(Ta',Ta"Yd, (ST, STar) +
+d,(Ta',\Ta)d,(STa,STa')]+gmax{d,(Ta',Tea),
d,(Ta',Ta'),d,(STa,STa"),d (a',a)}
or
[1 + pd,(Ta',Ta)ld,(Ta,Ta")] < pd,(Ta',Ta)d,(a,a')+
+gmax{d (a',a),d,(Ta',Ta),d,(STa,STa')}
or
[1+ pd,(Ta",Ta)ld,(Te,Te'") < pd,(Ta' ,Ta)d, (a0, ") + gmax 4 (14)

In the Case 2, we have max 4 =d,(Ta,Ta') and by (14) we obtain:

[1+ pd,(Ta',Ta)ld,(Te,Ta') < pd,(Te!',Ta)d,(Te!,Ta)+qd,(Te, Te')
or
d,(Ta,Ta")<qd,(Ta,Ta').

Since 0 < g <1, we obtain:
d,(Ta,Ta")=0
and by (13) it follows that d,(«,a") = 0, so we obtain again the inequality (11).
In the Case 3, by (3) for x = RSTa,z=STa' and in the same way we obtain:
[1+ pd,(STa',STa)ld,(STa,STa') < pd,(STa',STa)d, (T, Ter) + gmax A.

Since in this case max 4 =d,(STa,STa"), we have d,(Ta',Ta)<d,(STa,STa')
and we obtain:
[1+ pd,(STa,STa')|d,(STe,STa') < pd,(STa,STa')d,(STa, STa') + qd, (ST, STax')
from which it follows
d,(8Ta,STa') < qd,(STa,STa').

m
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Since 0<¢g <1 we take:
d; (ST, STa') =0
and by (13) it follows d,(e,a")=0. Thus, again, in this case the following equality
holds:

!

[ A P S

In the same way, it is proved the unicity of S and y.
Application. Let X =Y =Z =[0,1]c R and the mappings defined as follows:
1 for yel0,1]
Tx=x,Rz=1and Sy=

1
— for =0
2 5id
We have:
1 for xe€]0,1]
RSy=1,TRz=1and STx=

l for x=0
2

RSTx=1,TRSy=1 and STRZ =1.

We have to show now that 7,R and S satisfy the conditions of Theorem 2.1 for

- and g = —3— Indeed:
2 4

For every x,y€[0,1] we have d,(RSy,RSTx) :|1—1|: 0. Then the verity of the
inequality (1) is clear since its left side is 0.
The verity of the inequality (2) is clear too, since d,(TRz,TRSy) =0,Vx,y €[0,1].

We consider now the inequality (3). We have

|l—1|—%, for x=0and 0<z<1

d,(STx,STRz) =1 2
[1-1]=0, for 0<x<1and0<z<l

We distinguish two cases:
Case 1. For x =0 and 0 <z <1, the inequality (3) takes the form

1 1 1 1
(1+p|z—5|+p|0f1|)5 < p(|z—5|—|0—1|+iz—1\-|0—1|+|z—5|-|0u1|)+

0-1|,t-0f}.

+qmax{|z—%|,|z—ll,

We get
1 _3p 1
1+ p)—<—=—|z——=|+plz-]|+q.
(Lo =—-la=C| plz=1+q
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For p :% and g = i—, we obtain

3s3|z—l|+l|z—1|+—
447 2
or
osiiz—l|+l|z—1|
z 2

for all ze[0,1].

Thus, the inequality (3) is satisfied.

Case 2. For 0<x<1 and 0<z <1, since d,(STx,STRz) =0, the inequality (3) is
satisfied.

Therefore, as a conlcusion, we have the mappings 7,5 and R satisfy all the

conditions of the Theorem 2.1 for p =% and g = % The unique fixed point is 1 for each

of the mappings RST,TRS and STR.

Corollary 2.2 Theorem 1.2(2] is taken by Theorem 2.1 for p=0. Further, it is
sufficient the continuity of only one of the three mappings.
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